Convergence

Let W_1, W_2, \ldots and W be real-valued random variables.

• Say the W_n converge in distribution to W with distribution function F (and write $W_n \stackrel{d}{\to} W$) if, for all t at which F is continuous,

$$\mathbb{P}(W_n \leq t) \to F(t).$$

• We say the W_n converge in probability to W and write $W_n \stackrel{p}{\to} W$ if for all $\epsilon > 0$,

$$\mathbb{P}(|W_n - W| > \epsilon) \to 0.$$

Convergence

Let W_1, W_2, \ldots and W be real-valued random variables.

• Say the W_n converge in distribution to W with distribution function F (and write $W_n \stackrel{d}{\to} W$) if, for all t at which F is continuous,

$$\mathbb{P}(W_n \leq t) \to F(t).$$

• We say the W_n converge in probability to W and write $W_n \stackrel{p}{\to} W$ if for all $\epsilon > 0$,

$$\mathbb{P}(|W_n - W| > \epsilon) \to 0.$$

$$W_n \stackrel{p}{\to} W \Rightarrow W_n \stackrel{d}{\to} W$$

 $W_n \stackrel{d}{\to} c$ with c deterministic $\Rightarrow W_n \stackrel{p}{\to} W$.

Basic results

Theorem (Law of large numbers (LLN))

If W_1, W_2, \ldots are i.i.d. real-valued random variables and $\mathbb{E}(W_1) = \mu < \infty$, then as $n \to \infty$,

$$\frac{1}{n}\sum_{i=1}^n W_i \stackrel{p}{\to} \mu.$$

Basic results

Theorem (Law of large numbers (LLN))

If W_1, W_2, \ldots are i.i.d. real-valued random variables and $\mathbb{E}(W_1) = \mu < \infty$, then as $n \to \infty$,

$$\frac{1}{n}\sum_{i=1}^n W_i \stackrel{p}{\to} \mu.$$

Theorem (Central limit theorem (CLT))

In the setup above. We have

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}W_{i}-\mu\right)\stackrel{d}{
ightarrow}\mathsf{N}(0,1).$$

Basic results

Theorem (Law of large numbers (LLN))

If W_1, W_2, \ldots are i.i.d. real-valued random variables and $\mathbb{E}(W_1) = \mu < \infty$, then as $n \to \infty$,

$$\frac{1}{n}\sum_{i=1}^n W_i \stackrel{p}{\to} \mu.$$

Theorem (Central limit theorem (CLT))

In the setup above. We have

$$\sqrt{n}\left(\frac{1}{n}\sum_{i=1}^{n}W_{i}-\mu\right)\stackrel{d}{
ightarrow}\mathsf{N}(0,1).$$

Theorem (Continuous mapping theorem (CMT))

Suppose the sequence of random variables $(W_n)_{n=1}^{\infty}$ is such that $W_n \stackrel{p}{\to} W$. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous at every point in a set C with $\mathbb{P}(W \in C) = 1$. Then $f(W_n) \stackrel{p}{\to} f(W)$.

Theorem (Continuous mapping theorem (CMT))

Suppose the sequence of random variables $(W_n)_{n=1}^{\infty}$ is such that $W_n \stackrel{p}{\to} W$. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous at every point in a set C with $\mathbb{P}(W \in C) = 1$. Then $f(W_n) \stackrel{p}{\to} f(W)$.

Lemma (Slutsky's lemma)

Let $(U_n)_{n=1}^{\infty}$ and $(W_n)_{n=1}^{\infty}$ be sequences of random variables where $U_n \stackrel{d}{\to} U$ and $W_n \stackrel{p}{\to} c$ for random variable $U \in \mathbb{R}$ and deterministic $c \in \mathbb{R}$. Then